Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung -Keine kommerzielle Nutzung -Keine Bearbeitung 2.0 Deutschland http://creativecommons.org/licenses/by-nc-nd/2.0/de/ Abstract Ever since the word "robot" was introduced to the English language by KarelČapek's play "Rossum's Universal Robots" in 1921, robots have been expected to become part of our daily lives. In recent years, robots such as autonomous vacuum cleaners, lawn mowers, and window cleaners, as well as a huge number of toys have been made commercially available. However, a lot of additional research is required to turn robots into versatile household helpers and companions. One of the many challenges is that robots are still very specialized and cannot easily adapt to changing environments and requirements. Since the 1960s, scientists attempt to provide robots with more autonomy, adaptability, and intelligence. Research in this field is still very active but has shifted focus from reasoning based methods towards statistical machine learning. Both navigation (i.e., moving in unknown or changing environments) and motor control (i.e., coordinating movements to perform skilled actions) are important sub-tasks.In this thesis, we will discuss approaches that allow robots to learn motor skills. We mainly consider tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The presented tasks correspond to sports and games but the presented techniques will also be applicable to more mundane household tasks. Motor skills can often be represented by motor primitives. Such motor primitives encode elemental motions which can be generalized, sequenced, and combined to achieve more complex tasks. For example, a forehand and a backhand could be seen as two different motor primitives of playing table tennis. We show how motor primitives can be employed to learn motor skills on three different levels. First, we discuss how a single motor skill, represented by a motor primitive, can be learned using reinforcement learning. Second, we show how such learned motor primitives can be generalized to new situations. Finally, we present first steps towards using motor primitives in a hierarchical setting and how several motor primitives can be combined to achieve more complex tasks.To date, there have been a number of successful applications of learning motor primitives employing imitation learning. However, many interesting motor learning problems are high-dimensional reinforcement learning problems which are often beyond the reach of current reinforcement learning methods. We review research on reinforcement learning applied to robotics and point out key challenges and important strategies to render reinforcement learning tractable. Based on these insights, we introduce novel learning approaches both for single and generalized motor skills.For learning single motor skills, we study parametrized policy search methods and introduce a framework of reward-weighted imi...