The Air Force Civil Engineer Center's C-17 Load Cart is a large, 150-ton machine based on a modified Caterpillar 621G scraper for testing experimental pavements used in airfield surface construction and repair. Long lasting, durable, preparein-place, minimally resourced pavements represent a critical technology for airfield damage repair, especially in expeditionary settings, and formulations must be tested using realistic loads but without the expense and logistical challenges of using real aircraft. The Load Cart is an articulated vehicle consisting of the 621G tractor and a custom trailer carrying a weighted set of landing gear to simulate the loads exerted during aircraft landing and taxiing. During the test a human driver repetitively traffics the vehicle hundreds of times over an experimental patch of pavement, following an intricate trafficking pattern, to evaluate wear and mechanical properties of the pavement formulation. The job of driving the Load Cart is dull, repetitive, and prone to errors and systematic variation depending on the individual driver. This paper describes the full-stack development of an autonomy kit for the Load Cart, to enable repeatable testing without a driver. Open-source code (Robot Operating System), commercial-off-the-shelf sensors, and a modular design based on open standards are exploited to achieve autonomous operation without the use of GNSS (which is challenged by operation inside a metal test building). The Vehicle Control Unit is a custom interface in PC-104 form factor allowing actuation of the Load Cart via CAN J1939. Operational modes include manual, tele-operation, and autonomous.