2009
DOI: 10.1007/s11072-010-0085-1
|View full text |Cite
|
Sign up to set email alerts
|

Autonomous noetherian boundary-value problem in the critical case

Abstract: We establish constructive conditions for the existence of solutions of an autonomous Noetherian weakly nonlinear boundary-value problem for a system of ordinary differential equations in the critical case and develop a modified iterative procedure for finding its solutions. Statement of the ProblemWe investigate the problem of the construction of a solutionof the system of ordinary differential equationswith boundary condition [1,2] z(·, ε) = α + εJ(z(·, ε), ε).We seek a solution of the Noetherian (m = n) boun… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
7
0
2

Year Published

2009
2009
2021
2021

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 2 publications
0
7
0
2
Order By: Relevance
“…Thus, the following statement is proved [10]: (4) is satisfied and the boundary-value problem (1), (2) corresponds to the critical case…”
Section: Statement Of the Problemmentioning
confidence: 90%
See 2 more Smart Citations
“…Thus, the following statement is proved [10]: (4) is satisfied and the boundary-value problem (1), (2) corresponds to the critical case…”
Section: Statement Of the Problemmentioning
confidence: 90%
“…J(z 0 (·, c ) + x(·, ε), ε) = J(z 0 (·, c r ), 0) + 1 x(·, ε) + ε 3 (z 0 (·, c r ), 0) + εJ 3 (z 0 (·, c r ) + x(·, ε), ε); (10) this expansion can be represented in terms of Fréchet derivatives as follows:…”
Section: Statement Of the Problemmentioning
confidence: 99%
See 1 more Smart Citation
“…Óìîâè iñíóâàííÿ, à òàêîae iòåðàöiéíà ñõåìà äëÿ çíàõîäaeåííÿ ðîçâ'ÿçêiâ íåâèðîäaeåíî¨ñëàáêîíåëiíiéíî¨íåòåðîâî¨äèôåðåíöiàëüíî-àëãåáðà¨÷íî¨êðàéîâî¨çàäà÷i (9) â íåêðèòè÷íîìó âèïàäêó, à ñàìå: çà óìîâèP Q * = 0, çíàéäåíi â ñòàòòi[5]. Ìåòîþ äàíî¨ñòàòòi ¹ çíàõîäaeåííÿ óìîâ çâiäíîñòi íåëiíiéíî¨íåâèðîäaeåíî¨íåòåðîâî¨äèôåðåíöiàëüíî-àëãåáðà¨÷íî¨êðàéîâîç àäà÷i (9) â êðèòè÷íîìó âèïàäêó äî íåêðèòè÷íîãî âèïàäêó àíàëîãi÷íî[5,6].…”
unclassified
“…В заключение заметим, что частным случаем неавтономной периодической задачи в случае параметрического резонанса, в том числе и неавтономной периодической задачи для уравнения типа Хилла, является автономная периодическая задача, которая после замены независимой переменной приведена к неавтономной периодической задаче, содержащей дополнительную неизвестную, отвечающую за поправку на период искомого решения [Малкин, 1956;Бойчук, Чуйко, 1992;Chujko, Boichuk, 2009].…”
unclassified