517.9Using the least squares method, we construct a new iterative procedure for finding solutions of a weakly nonlinear boundary-value problem for a system of ordinary differential equations in the critical case in the form of an expansion of a solution in a generalized Fourier polynomial in the neighborhood of the generating solution. We obtain an estimate for the range of values of the small parameter for which this iterative procedure converges to the required solution.
Statement of the ProblemWe investigate the problem of finding solutions [1]of the system of ordinary differential equationsthat satisfy the boundary condition z(·, ε) = α + εJ(z(·, ε), ε).We seek a solution of problem (1), (2) in a small neighborhood of the solutionof the generating problem
Узагальнення теореми Ньютона-Канторовича в банаховому просторі Представлено членом-кореспондентом НАН України В.Я. Гутлянським Побудовано модифікацію класичного методу Ньютона-Канторовича в банаховому просторі. Для зна ходження розв'язку нелінійного операторного рівняння отримано ітераційну схему із квадратичною збіжністю. Продемонстровано, що побудована модифікація методу Ньютона-Канторовича застосовна для знаходження наближень до розв'язків нелінійних інтегральних та диференціально-алгебраїчних крайових задач. Ключові слова: модифікований метод Ньютона-Канторовича, банахів простір, нелінійне операторне рівняння, квадратична збіжність. A GENERALIZATION OF THE NEWTON-KANTOROVICH THEOREM IN A BANACH SPACE We present a modification of the Newton-Kantorovich method for nonlinear operator equations in a Banach space. We prove, under certain conditions, that this modified Newton-Kantorovich method has quadratic convergence. The modified Newton-Kantorovich method is used to solve some nonlinear integral and integral-differential equations.
We establish constructive existence conditions and construct a generalized Green operator for the construction of solutions of a Noetherian linear boundary-value problem for a system of ordinary differential equations with switchings and pulse action in critical and noncritical cases.
Statement of the ProblemConsider the problem of finding a solutionof a linear homogeneous differential equation with switchingswhere A i (t) are n × n matrices continuous on the segments [a;Let W 0 (t) be the normal (W 0 (a) = I n ) fundamental matrix of system (1) on the segment [a; τ 1 ] and let W 1 (t) be a fundamental matrix of this system on the segment [τ 1 ; τ 2 ] that satisfies the condition W 0 (τ 1 ) = W 1 (τ 1 ). The existence of the normal (W 0 (τ 1 ) = W 1 (τ 1 )) fundamental matrix of system (1) on the segment [τ 1 ; τ 2 ] follows from the nonsingularity of the fundamental matrices of system (1) on the segments [a; τ 1 ] and [τ 1 ; τ 2 ]. Thus, the normal (X 0 (a) = I n ) fundamental matrix X 0 (t) of system (1) can be represented in the formThe matrix X 0 (t) is continuous on the segment [a; b] and satisfies system (1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.