2018
DOI: 10.1007/s10958-018-4054-z
|View full text |Cite
|
Sign up to set email alerts
|

On a Reduction of the Order in a Differential-Algebraic System

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
10

Year Published

2018
2018
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 31 publications
(18 citation statements)
references
References 10 publications
0
8
0
10
Order By: Relevance
“…By analogy with the classication of dierential-algebraic equations [3,6], as well as with the classication of impulse boundary problems for ordinary dierential equations [2,7,8] under condition (2)), in the case of boundedness of matrices A + (k)B(k), A + (k)f (k), we will say that the system of linear dierence-algebraic equations (1) is degenerated. Note that, in contrast to the traditional system of linear dierence equations [1], the solution of the system of linear dierencealgebraic equations (1) under condition (2) depends on an arbitrary bounded vector function ν 0 (k) ∈ R ρ 0 .…”
Section: Nondegenerate Systems Of Linear Dierence-algebraic Equationsmentioning
confidence: 99%
“…By analogy with the classication of dierential-algebraic equations [3,6], as well as with the classication of impulse boundary problems for ordinary dierential equations [2,7,8] under condition (2)), in the case of boundedness of matrices A + (k)B(k), A + (k)f (k), we will say that the system of linear dierence-algebraic equations (1) is degenerated. Note that, in contrast to the traditional system of linear dierence equations [1], the solution of the system of linear dierencealgebraic equations (1) under condition (2) depends on an arbitrary bounded vector function ν 0 (k) ∈ R ρ 0 .…”
Section: Nondegenerate Systems Of Linear Dierence-algebraic Equationsmentioning
confidence: 99%
“…Äîñëiäaeó¹ìî çàäà÷ó ïðî ïîáóäîâó ðîçâ'ÿçêiâ z(t) ∈ C 1 [a, b] ëiíiéíîä èôåðåíöiàëüíî-àëãåáðà¨÷íî¨êðàéîâî¨çàäà÷i [1,2,3] A(t)z (t) = B(t)z(t) + f (t), z(•) = α, α ∈ R k ;…”
Section: ëIíiéíi êðàéîâI çàäà÷I äëÿ íåâèðîäAeåíèõ äèôåðåíöIàëüíî-àëãåmentioning
confidence: 99%
“…Òàêèì ÷èíîì, çà óìîâè ρ 0 = 0, ñèñòåìà (3), ðîçâ'ÿçíà âiäíîñíî ïîõiäíî¨, çàëåaeèòü âiä äîâiëüíî¨íåïåðåðâíî¨âåêòîð-ôóíêöi¨ν 0 (t). Ïîçíà÷èìî X 0 (t) íîðìàëüíó ôóíäàìåíòàëüíó ìàòðèöþ X 0 (t) = A + (t)B(t)X 0 (t), X 0 (a) = I n îòðèìàíî¨òðàäèöiéíî¨ñèñòåìè çâè÷àéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü (3). Âiäìiòèìî, ùî íîðìàëüíà ôóíäàìåíòàëüíà ìàòðèöÿ X 0 (t) íåâèðîäaeåíà.…”
Section: ëIíiéíi êðàéîâI çàäà÷I äëÿ íåâèðîäAeåíèõ äèôåðåíöIàëüíî-àëãåunclassified
See 1 more Smart Citation
“…Как известно [6,7,8], любая (m × n)− матрица A(k) в определенном базисе может быть представлена в виде стандартного разложения…”
Section: стандартное разложение матрицыunclassified