2022
DOI: 10.7717/peerj-cs.1163
|View full text |Cite
|
Sign up to set email alerts
|

Autonomous schema markups based on intelligent computing for search engine optimization

Abstract: With advances in artificial intelligence and semantic technology, search engines are integrating semantics to address complex search queries to improve the results. This requires identification of well-known concepts or entities and their relationship from web page contents. But the increase in complex unstructured data on web pages has made the task of concept identification overly complex. Existing research focuses on entity recognition from the perspective of linguistic structures such as complete sentences… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 59 publications
0
2
0
1
Order By: Relevance
“…There are some approaches to extract Schema.org annotations from text (Abbasi et al , 2022) and the terminology has also been reused to some extent in other terminological efforts, as it is the case of the YAGO ontology (Tanon et al , 2020). However, we are chiefly interested here in how KGs as Wikidata may be complemented by Web sources.…”
Section: Introductionmentioning
confidence: 99%
“…There are some approaches to extract Schema.org annotations from text (Abbasi et al , 2022) and the terminology has also been reused to some extent in other terminological efforts, as it is the case of the YAGO ontology (Tanon et al , 2020). However, we are chiefly interested here in how KGs as Wikidata may be complemented by Web sources.…”
Section: Introductionmentioning
confidence: 99%
“…The second part uses intelligent solutions to classify the blocks into predefined types [4]. However, both of these parts currently are facing some challenges, which are related to the hierarchical nature of web page blocks [5]:…”
Section: Introductionmentioning
confidence: 99%
“…Automatizuotas duomenų išgavimas iš tinklalapių, remiantis HTML kodu, susiduria su iššūkiais, susijusiais su blokų hierarchinės prigimties atpažinimu, jų segmentavimu ir kategorizavimu (Cheng et al, 2019;Hashemi, 2020;Abbasi et al, 2022). Trūksta sprendimų, leidžiančių autonomiškai išgauti ir teisingai kategorizuoti duomenis iš nežinomų tinklalapio struktūrų, todėl siūlomas metodas, kurį taikant siekiama pagerinti tinklalapio segmentavimo sprendimus, apimant platesnį turinio blokų spektrą ir suteikiant įžvalgų apie jų vidinę struktūrą bei hierarchinius santykius.…”
Section: Tinklalapio Turinio Blokų Identifikavimas Su Išplėstinėmis B...unclassified