Early screening of mental disorders plays a crucial role in diagnosis and treatment. This study explores how data‐driven methods can leverage the information available on social media platforms to predict postpartum depression (PPD). A generalized approach is proposed where linguistic features are extracted from user‐generated textual posts on social media and categorized as general, depressive, and PPD representative using multiple machine learning techniques. We find that techniques used in our study exhibit strong predictive capabilities for PPD content. Holdout validation showed that multilayer perceptron outperformed other techniques such as support vector machine and logistic regression used in this study with 91.7% accuracy for depressive content identification and up to 86.9% accuracy for PPD content prediction. This work adopts a hierarchical approach to predict PPD. Therefore, the reported PPD accuracy represents the performance of the model to correctly classify PPD content from non‐PPD depressive content.
With advances in artificial intelligence and semantic technology, search engines are integrating semantics to address complex search queries to improve the results. This requires identification of well-known concepts or entities and their relationship from web page contents. But the increase in complex unstructured data on web pages has made the task of concept identification overly complex. Existing research focuses on entity recognition from the perspective of linguistic structures such as complete sentences and paragraphs, whereas a huge part of the data on web pages exists as unstructured text fragments enclosed in HTML tags. Ontologies provide schemas to structure the data on the web. However, including them in the web pages requires additional resources and expertise from organizations or webmasters and thus becoming a major hindrance in their large-scale adoption. We propose an approach for autonomous identification of entities from short text present in web pages to populate semantic models based on a specific ontology model. The proposed approach has been applied to a public dataset containing academic web pages. We employ a long short-term memory (LSTM) deep learning network and the random forest machine learning algorithm to predict entities. The proposed methodology gives an overall accuracy of 0.94 on the test dataset, indicating a potential for automated prediction even in the case of a limited number of training samples for various entities, thus, significantly reducing the required manual workload in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.