To realize precision agriculture at multiple locations in the field, a low-cost measurement system should be developed for easy collection of hydrometeorological data, such as temperature, moisture, and light. In this study, a compact and low-cost hydrometeorological measurement system with a simplified wire code, which is customizable according to the purpose of observation, was built using a circuit board that connects Arduino to the sensors, which was then implemented and analyzed. The developed system measures air and soil temperatures, soil water content, and photosynthetic photon flux density using a sensor connected to Arduino Uno and saves the continuous, high-temporal-resolution output to an SD card. The results obtained from continuous measurement showed that the data collected using this system was significantly better than those collected using commercially available equipment. Anyone can easily measure the weather environments by using this fully open, highly versatile, portable, and user-friendly system. This system can contribute to the growth and expansion of precision agriculture, field management, development of crop models, and laborsaving. It can also provide a global solution to ongoing agricultural issues and improve the efficiency of farming operations, particularly in developing and low-income countries.