One of the main applications of hyperspectral image analysis is anomaly detection where the problem of interest is the detection of small rare objects that stand out from their surroundings. A common approach to anomaly detection is to first model the background scene and then to use a detector that quantifies the difference of a particular pixel from this background. However, identifying the dominant background components and modeling them is a challenging task. We propose an anomaly detection framework that uses Gaussian mixture models for characterizing the scene background in hyperspectral images. First, the full spectrum is divided into several contiguous band groups for dimensionality reduction as well as for exploiting the peculiarities of different parts of the spectrum. Then, sparse spectral unmixing is performed for each band group for identifying significant endmembers in the scene. Three methods for identifying the dominant background groups such as thresholding, hierarchical clustering and biclustering are used in the endmember abundance space to retrieve the sets of pixel groups that represent dominant background components. Next, these pixel groups are used for initializing individual Gaussian mixture models that are estimated separately for each spectral band group. The proposed method enables automatic identification of the number of mixture components and effective initialization of the estimation procedure for the mixture model. Finally, the Gaussian mixture models for all groups are statistically fused for obtaining the final anomaly map for the scene. Comparative experiments showed that the proposed methods performed better than two other density-based anomaly detectors, especially for small false positive rates, on an airborne hyperspectral data set. Anomali tespiti, hiperspektral görüntü analizindeki ana uygulamalardan biridir. Anomali tespitindeki problem, görüntüde seyrek olarak bulunan,çevresine göre farklılık gösteren küçük nesnelerin tespitidir. Yaygın yaklaşımlardan biri görüntü arka planının modellenmesi ve sınanan pikselin bu modele olan farklılıgına göre sınıflandırılmasıdır. Ancak, karmaşık arka planların modellenmesi kolay degildir. Bu kapsamda, Gauss karışım modeli tabanlı bir anomali tespiti yöntemï onerilmektedir.Öncelikle görüntü belirli sayıda spektral gruplara ayrılmaktadır. Ardından seyrek spektral ayrıştırma bütün spektral grouplarda uygulanmaktadır. Sonrasında, elde edilen son eleman bolluk degerleri kullanılarak, eşikleme tabanlı, sıra düzenli tabanlı, veçift yönlüöbekleme tabanlı olmaküzereüç farklı yöntem ile baskın arka plan grupları tespit edilmektedir. Ardından, belirlenen arka plan gruplarını temsil eden pikseller başlangıç degerlerinin hesaplanmasında kullanılmaküzere, her bir spektral grup için bir Gauss karışım modelï ogrenilmektedir.Önerilen yöntem karışım modeli için bileşen sayısının otomatik belirlenmesine ve kestirim sürecinin etkili başlatılmasına olanak saglamaktadir. Son olarak,ögrenilen Gauss karışım modelleri istatistiksel olarak birleştirilerek sonu...