1988
DOI: 10.1007/bf01394276
|View full text |Cite
|
Sign up to set email alerts
|

Autour d'une conjecture de Serge Lang

Abstract: IntroductionManinet Mumford ont pos6, fi peu pr6s au m~me moment, la question suivante : <~Une courbe de genre au moins deux poss6de-t-elle un nombre fini de points de torsion dans sa jacobienne?>>. Dans [20] (voir aussi [21]), Serge Lang a g6n6ralis6 cette question en conjecturant que l'intersection d'une sous-vari6t6 alg6brique d'une vari6t6 ab61ienne avec ses points de torsion est d6crite par un nombre fini de translat6s de sous-groupes alg6briques; il ajoutait qu'on pouvait poser la m~me conjecture sur un… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
120
0
9

Year Published

1999
1999
2012
2012

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 139 publications
(130 citation statements)
references
References 25 publications
1
120
0
9
Order By: Relevance
“…division points of the trivial subgroup) weak forms of the conjecture go back to Chabauty (see Lang [49]), while proofs of it in the simplest case of plane curves, due to Ihara-Serre-Tate, are given in [48]. For X = E 1 × · · · × E m × G our result is a special case of Hindry's theorem [42] affirming the torsion point case of Lang's conjecture for subvarieties of commutative group varieties. MM became part of the Mordell-Lang conjecture (ML, proved by Faltings, Vojta,.…”
Section: Theorem Letmentioning
confidence: 79%
“…division points of the trivial subgroup) weak forms of the conjecture go back to Chabauty (see Lang [49]), while proofs of it in the simplest case of plane curves, due to Ihara-Serre-Tate, are given in [48]. For X = E 1 × · · · × E m × G our result is a special case of Hindry's theorem [42] affirming the torsion point case of Lang's conjecture for subvarieties of commutative group varieties. MM became part of the Mordell-Lang conjecture (ML, proved by Faltings, Vojta,.…”
Section: Theorem Letmentioning
confidence: 79%
“…In [Hindry 1988], Hindry defines a point as being indivisible if it is indivisible by all natural numbers m > 1. One can replace this definition by the one introduced above, that is, P indivisible by m in the hypothesis of [Hindry 1988, Lemme 14].…”
Section: Arithmetic Preliminariesmentioning
confidence: 99%
“…One can replace this definition by the one introduced above, that is, P indivisible by m in the hypothesis of [Hindry 1988, Lemme 14]. In fact, let P be a point indivisible by m. We can write P = [l]P 1 with P 1 indivisible as in [Hindry 1988] and (l, m) = 1. There exist u, v ∈ ‫ގ‬ such that ul + vm = 1, which allows us to write…”
Section: Arithmetic Preliminariesmentioning
confidence: 99%
“…On simplifie pour conclure. Pour le point 2, il s'agit du point (ii) du lemme 6 de [14] et le point 3 correspond au point (ii) du lemme 2.1. de [10].…”
Section: Pour Toute Sous-variétéunclassified
“…Pour le point 2, les composantes de Φ étant admissibles, on voit (cf. [14], Lemme 6 (iii)) que V est incomplètement définie par des équations de degré majoré par…”
Section: Annales De L'institut Fourierunclassified