2012
DOI: 10.2140/ant.2012.6.1289
|View full text |Cite
|
Sign up to set email alerts
|

On the rank of the fibers of rational elliptic surfaces

Abstract: We consider an elliptic surface π : Ᏹ → ‫ސ‬ 1 defined over a number field k and study the problem of comparing the rank of the special fibers over k with that of the generic fiber over k(‫ސ‬ 1 ). We prove, for a large class of rational elliptic surfaces, the existence of infinitely many fibers with rank at least equal to the generic rank plus two.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
14
0
5

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 10 publications
(19 citation statements)
references
References 18 publications
0
14
0
5
Order By: Relevance
“…In [Sal12], Salgado studies the problem of comparing the rank of the special fibers over a number field k with that of the generic fiber over k(P 1 ). She proves for a large class of rational elliptic surfaces the existence of infinitely many fibers whose rank exceeds the generic rank of at least 2.…”
Section: Previous Resultsmentioning
confidence: 99%
“…In [Sal12], Salgado studies the problem of comparing the rank of the special fibers over a number field k with that of the generic fiber over k(P 1 ). She proves for a large class of rational elliptic surfaces the existence of infinitely many fibers whose rank exceeds the generic rank of at least 2.…”
Section: Previous Resultsmentioning
confidence: 99%
“…Le théorème 3. k . (iii) Lorsque la surface X est k-rationnelle, sous certaines hypothèses supplémentaires sur X, C. Salgado [15] montre que l'ensemble des k-points m ∈ U (k) avec r m ≥ r + 2 est infini. Un énoncé plus général est obtenu par Loughran et Salgado [9] : il porte sur les surfaces elliptiques géométriquement rationnelles.…”
Section: Saut Du Rangunclassified
“…(iv) Dans [7], M. Hindry et C. Salgado étendent un certain nombre des résultats de [15] au cas des familles de variétés abéliennes sur la droite projective. Leur théorème 1.4 est maintenant un cas particulier du théorème 3.3 ci-dessus.…”
Section: Saut Du Rangunclassified
See 2 more Smart Citations