This paper investigates the cutting forces arising when using a single abrasive grain. Analytical studies were carried out using a model of a single abrasive grain in the form of a rod with a radiused apex acting on the workpiece material. The slip-line method (method of characteristics) was used to calculate the deformation intensity of a plastically edged workpiece material under the action of a single grain. Mathematical models were developed for the following factors: plastic deformation of the material, edging of the stagnated zone and its friction against the grain surface when moved upwards in the form of chippings, grain friction against the plastically deformed material, and the action of the dynamic component of plastic deformation. The significance of the dynamic component in the overall balance of forces related to plastic deformation was established by determining the ratio of dynamic stress on the break line and shear yield point. This dependence calculated for D16T and 30HGSA materials showed the feasibility of accounting for the dynamic component subsequently processed by free orthogonal cutting and rolling contact deformation using a special machine with numerical control. Further, using the same machine, drilling of probing holes was performed with video recording of the surface image prior to and following drilling. By varying the speckle images, the displacements of material particles on the sample surface were determined by the digital image correlation method, following which the radial deformations were determined by differentiating the obtained displacement values. Statistical analysis of a sample of radial deformations equidistant from the centre of the hole while varying the rotation angle by Fourier transformation with the calculation of the distribution period showed that the distribution is periodic. It is established that the periodograms constructed using experimental data have local maxima at a period value close to 180 degrees. This determines that the main calculated components of the residual stresses and the angle of their rotation be constant when selected to calculate the values of radial deformations at arbitrary points around the hole. The paper presents an approach that allows residual stresses to be determined by drilling probing holes and assessing the displacement of material particles on the sample surface due to the redistribution of residual stresses. For the analytical description of experimental data, it is proposed that an approximating periodic function be used, and the physical meaning of its coefficients is determined.