2016
DOI: 10.18677/enciclopedia_biosfera_2016_018
|View full text |Cite
|
Sign up to set email alerts
|

Avaliação Do Uso De Regressão E Rede Neural Artificial Para Modelagem Do Afilamento Do Fuste De Eucalipto Em Sistema Silvipastoril

Abstract: RESUMOO objetivo deste estudo foi avaliar a eficiência do uso de uma rede neural artificial (RNA) para estimar o afilamento do fuste de árvores de eucalipto em sistemas silvipastoris com dois arranjos espaciais. Os dados foram provenientes de 35 árvores-amostras cubadas em sistemas silvipastoris com arranjos espaciais de 12 m x 4 m e 12 m x 2 m. Foi ajustado o modelo proposto por Garay para cada arranjo espacial. Foi treinada uma RNA de configuração Multilayer Perceptron utilizando os arranjos como variável ca… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
2
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 24 publications
1
2
0
2
Order By: Relevance
“…The greater dispersion of the error observed in the prediction of tree apex values, in diameters smaller than 10 cm, were also found in some works involving ANN models (MÜLLER et al, 2014;SCHIKOWSKI et al, 2015;MENDONÇA et al, 2015). When evaluating the histogram of residues, the symmetrical distribution with mean close to zero was similar to that found by Silva et al (2016), confirming the accuracy of the ANNs technique applied in this work.…”
Section: Discussionsupporting
confidence: 84%
“…The greater dispersion of the error observed in the prediction of tree apex values, in diameters smaller than 10 cm, were also found in some works involving ANN models (MÜLLER et al, 2014;SCHIKOWSKI et al, 2015;MENDONÇA et al, 2015). When evaluating the histogram of residues, the symmetrical distribution with mean close to zero was similar to that found by Silva et al (2016), confirming the accuracy of the ANNs technique applied in this work.…”
Section: Discussionsupporting
confidence: 84%
“…KEYWORDS: Forest Management; tapering; diameters along the shaft. (BINOTI et al, 2014;RIBEIRO et al, 2016, LACERDA et al, 2017, de altura (BINOTI et al, 2013;VENDRUSCOLO et al, 2015, do diâmetro relativo e estudo da forma MENDONÇA et al, 2015;SCHIKOWSKI et al, 2015;VENDRUSCOLO et al, 2016;MARTINS et al, 2016;SILVA et al, 2016;CAMPOS et al, 2017;MARTINS et al, 2017), do diâmetro e altura (VIEIRA et al, 2018), em crescimento e produção (CASTRO et al, 2013;BINOTI et al, 2015).…”
Section: Conclusõesunclassified
“…Fernandes et al (2017) developed volumetric equations for two native species established in a silvopastoral system in the Amazon region. Silva et al (2016) studied the use of regression and artificial neural networks for modeling the stem taper of an eucalypt clone in two spatial arrangements, also in a silvopastoral system. In a savanna region, the works that stand out are those on taper (Cerqueira et al, 2019a), volume (Lemos-Junior et al, 2016;Cerqueira et al, 2020), and height (Cerqueira et al, 2019b) modelling.…”
Section: Introductionmentioning
confidence: 99%