To reveal the temperature characteristics and mechanical properties of frame structures with concrete filled steel tube reinforced concrete (CFSTRC) columns under fire, the fire resistance of four planar frames consisting of CFSTRC columns and reinforced concrete (RC) beams subjected to ISO-834 standard fire was tested in this study. The test parameters included the column fire load ratio, beam fire load ratio, and beam-to-column linear stiffness ratio. In the test, the temperatures of the column, beam, and slab cross-sections in the joint and nonjoint zones were measured, and the fire resistance, beam and column deformation curves, and failure modes of the frame were investigated. The experimental results showed that the concrete volume was the main factor affecting the temperature distribution on each typical cross-section of the frame: the temperatures at the measuring points of the beam and column in the joint zone were significantly lower than the temperatures at the corresponding points in the nonjoint zone, and the concrete outside the steel tube significantly slowed the propagation of temperature to the steel tube and its concrete core. Hence, there was only a small loss of the bearing capacity of steel tube and the core concrete inside the steel tube. The column fire load ratio, beam fire load ratio, and beam-to-column linear stiffness ratio have obvious influences on the fire resistance: the larger the column fire load ratio or beam fire load ratio, the smaller the fire resistance; and the larger the beam-to-column linear stiffness ratio, the larger the fire resistance.