Glycoside hydrolases (GHs) are enzymes that are able to rearrange the plant cell wall polysaccharides, being developmental-and stress-regulated. Such proteins are used in enzymatic cocktails for biomass hydrolysis in the second-generation ethanol (E2G) production. In this chapter, we investigate GHs identified in plant cell wall proteomes by predicting their functions through alignment with homologous plant and microorganism sequences and identification of functional domains. Up to now, 49 cell wall GHs were identified in sugarcane and 114 in Brachypodium distachyon. We could point at candidate proteins that could be targeted to lower biomass recalcitrance. We more specifically addressed several GHs with predicted cellulase, hemicellulase, and pectinase activities, such as β-xylosidase, α and β-galactosidase, α-N-arabinofuranosidases, and glucan β-glucosidases. These enzymes are among the most used in enzymatic cocktails to deconstruct plant cell walls. As an example, the fungi arabinofuranosidases belonging to the GH51 family, which were also identified in sugarcane and B. distachyon, have already been associated to the degradation of hemicellulosic and pectic polysaccharides, through a peculiar mechanism, probably more efficient than other GH families. Future research will benefit from the information available here to design plant varieties with self-disassembly capacity, making the E2G more cost-effective through the use of more efficient enzymes.