Publisher's copyright statement:Reprinted with permission from the American Physical Society: Physical Review D 96, 075003 c 2017 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modied, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. We discuss phenomenological criteria for defining "axion windows," namely regions in the parameter space of the axion-photon coupling where realistic models live. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be highly desirable to specify them in terms of precise phenomenological requirements. We first focus on hadronic axion models within post-inflationary scenarios, in which the initial abundance of the new vectorlike quarks Q is thermal. We classify their representations R Q by requiring that (i) the Q are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) the theory remains weakly coupled up to the Planck scale. The more general case of multiple R Q is also studied, and the absolute upper and lower bounds on the axion-photon coupling as a function of the axion mass is identified. Pre-inflationary scenarios in which the axion decay constant remains bounded as f a ≤ 5 × 10 11 GeV allow for axion-photon couplings only about 20% larger. Realistic Dine-Fischler-Srednicki-Zhitnitsky type of axion models also remain encompassed within the hadronic axion window. Some mechanisms that can allow to enhance the axion-photon coupling to values sizeably above the preferred window are discussed.