The effect of the growth temperature and the Ga precursor flow on the epitaxy of Si1-xGex:Ga is studied. These parameters are found to have a significant impact on the Ga surface segregation behavior. In particular, Ga in situ doping impacts the growth rate of the epilayer, the Si1-xGex alloy composition, and the onset of strain relaxation. The growth temperature can be used to modulate the Ga segregation, enabling the deposition of materials with enhanced dopant concentrations and improved electrical properties. The Ga local atomic environment was studied in both a Si0.4Ge0.6:Ga and a Ge:Ga sample by X-ray absorption fine structure. The local environment of the Ga determined confirmed that the majority of dopants occupy a substitutional position within the lattice.