Aging is accompanied by a decline in B lymphopoiesis in the bone marrow and accumulation of long-lived B cells in the periphery. The mechanisms underlying these changes are unclear. To explore whether aging in the B lineage is subjected to homeostatic regulation, we used mutant mice bearing chronic B cell deficiency from birth. We show that chronic B cell deficiency from birth, resulting from impaired maturation (CD19−/− and CD74−/−) or reduced survival (baff-r−/−), prevents age-related changes in the B lineage. Thus, frequencies of early and late hematopoietic stem cells, B lymphopoiesis, and the rate of B cell production do not substantially change with age in these mice, as opposed to wild-type mice where kinetic experiments indicate that the output from the bone marrow is impaired. Further, we found that long-lived B cells did not accumulate and peripheral repertoire was not altered with age in these mice. Collectively, our results suggest that aging in the B lineage is not autonomously progressing but subjected to homeostatic regulation.