Solar power poses challenges to the management of grid energy due to its intermittency. To have an optimal integration of solar power on the electricity grid it is important to have accurate forecasts. This study discusses the comparative analysis of semi-parametric extremal mixture (SPEM), generalised additive extreme value (GAEV) or quantile regression via asymmetric Laplace distribution (QR-ALD), additive quantile regression (AQR-1), additive quantile regression with temperature variable (AQR-2) and penalised cubic regression smoothing spline (benchmark) models for probabilistic forecasting of hourly global horizontal irradiance (GHI) at extremely high quantiles (τ = 0.95, 0.97, 0.99, 0.999 and 0.9999). The data used are from the University of Venda radiometric in South Africa and are from the period 1 January 2020 to 31 December 2020. Empirical results from the study showed that the AQR-2 is the best fitting model and gives the most accurate prediction of quantiles at τ = 0.95, 0.97, 0.99 and 0.999, while at 0.9999-quantile the GAEV model has the most accurate predictions. Based on these results it is recommended that the AQR-2 and GAEV models be used for predicting extremely high quantiles of hourly GHI in South Africa. The predictions from this study are valuable to power utility decision-makers and system operators when making highrisk decisions and regulatory frameworks that require high-security levels. This is the first application to conduct a comparative analysis of the proposed models using South African solar irradiance data, to the best of our knowledge.