In this paper, we introduce a robust estimator of the tail index of a Pareto-type distribution. The estimator is obtained through the use of the minimum density power divergence with an exponential regression model for log-spacings of top order statistics. The proposed estimator is compared to existing minimum density power divergence estimators of the tail index based on fitting an extended Pareto distribution and exponential regression model on log-ratio of spacings of order statistics. We derive the influence function and gross error sensitivity of the proposed estimator of the tail index to study its robustness properties. In addition, a simulation study is conducted to assess the performance of the estimators under different contaminated samples from different distributions. The results show that our proposed estimator of the tail index has better mean square errors and is less sensitive to an increase in the number of top order statistics. In addition, the estimation of the exponential regression model yields estimates of second-order parameters that can be used for estimation of extreme events such as quantiles and exceedance probabilities. The proposed estimator is illustrated with a practical dataset on insurance claims.
Although, there exists numerous literature on the procedure for forecasting or predicting election results, in Ghana only opinion poll strategies have been used. To fill this gap, the paper develops Markov chain models for forecasting the 2016 presidential election results at the Regional, Zonal (i.e. Savannah, Coastal and Forest) and the National levels using past presidential election results of Ghana. The methodology develops a model for prediction of the 2016 presidential election results in Ghana using the Markov chains Monte Carlo (MCMC) methodology with bootstrap estimates. The results were that the ruling NDC may marginally win the 2016 Presidential Elections but would not obtain the more than 50 % votes to be declared an outright winner. This means that there is going to be a run-off election between the two giant political parties: the ruling NDC and the major opposition party, NPP. The prediction for the 2016 Presidential run-off election between the NDC and the NPP was rather in favour of the major opposition party, the NPP with a little over the 50 % votes obtained.
Assessing the probability of very low or high water levels is an important issue in the management of hydroelectric dams. In the case of the Akosombo dam, very low and high water levels result in load shedding of electrical power and flooding in communities downstream respectively. In this paper, we use extreme value theory to estimate the probability and return period of very low water levels that can result in load shedding or a complete shutdown of the dam’s operations. In addition, we assess the probability and return period of high water levels near the height of the dam and beyond. This provides a framework for a possible extension of the dam to sustain the generation of electrical power and reduce the frequency of spillage that causes flooding in communities downstream. The results show that an extension of the dam can reduce the probability and prolong the return period of a flood. In addition, we found a negligible probability of a complete shutdown of the dam due to inadequate water level.
In spite of the differences in visual stimulus of human beings such as ageing, changing conditions of a person, and occlusion, recognition can even be done at a glance by the human eye many years after the previous encounter. It has been established that facial differences like the hairstyle changes, growing of one’s beard, wearing of glasses, and other forms of occlusions can hardly hinder the power of the human brain from making a face recognition. However, the same cannot easily be said about automated intelligent systems which have been developed to mimic the skill of the human brain to aid in recognition. There have been growing interests in developing a resilient and efficient recognition system mainly because of its numerous application areas (access control, entertainment/leisure, security system based on biometric data, and user-friendly human-machine interfaces). Although there have been numerous researches on face recognition under varying pose, illumination, expression, and image degradations, problems caused by occlusions are mostly ignored. This study thus focuses on facial occlusions and proposes an enhancement mechanism through face image augmentation to improve the recognition of occluded face images. This study assessed the performance of Principal Component Analysis with Singular Value Decomposition using Fast Fourier Transform (FFT-PCA/SVD) for preprocessing face recognition algorithm on face images with missingness and augmented face image database. It was found that the average recognition rates for the FFT-PCA/SVD algorithm were the same ( 90 % ) when face images with missingness and augmented face images were used as test images, respectively. The statistical evaluation revealed that there exists a significant difference in the average recognition distances for the face images with missingness and augmented face images when FFT-PCA/SVD is used for recognition. Augmented face images tend to have a relatively lower average recognition distance when used as test images. This finding is contrary to the equal performance assessment by the adopted numerical technique. The MICE algorithm is therefore recommended as a suitable imputation mechanism for enhancing/improving the performance of the face recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.