In real life we often have to deal with situations where the sampled observations are independent and share common parameters in their distribution but are not identically distributed. While the methods based on maximum likelihood provide canonical approaches for doing statistical inference in such contexts, it carries with it the usual baggage of lack of robustness to small deviations from the assumed conditions. In the present paper we develop a general estimation method for handling such situations based on a minimum distance approach which exploits the robustness properties of the density power divergence measure (Basu et al. 1998 [2]). We establish the asymptotic properties of the proposed estimators, and illustrate the benefits of our method in case of linear regression.
The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail-Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples.
We consider a robust version of the classical Wald test statistics for testing simple and composite null hypotheses for general parametric models. These test statistics are based on the minimum density power divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness properties is given though the influence functions as well as the chi-square inflation factors. It is theoretically established that the level and power of these robust tests are stable against outliers, whereas the classical Wald test breaks down. Some numerical examples confirm the validity of the theoretical results.
The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.