We consider a robust version of the classical Wald test statistics for testing simple and composite null hypotheses for general parametric models. These test statistics are based on the minimum density power divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness properties is given though the influence functions as well as the chi-square inflation factors. It is theoretically established that the level and power of these robust tests are stable against outliers, whereas the classical Wald test breaks down. Some numerical examples confirm the validity of the theoretical results.
In this paper a robust version of the classical Wald test statistics for linear hypothesis in the logistic regression model is introduced and its properties are explored. We study the problem under the assumption of random covariates although some ideas with non random covariates are also considered. The family of tests considered is based on the minimum density power divergence estimator instead of the maximum likelihood estimator and it is referred to as the Wald-type test statistic in the paper. We obtain the asymptotic distribution and also study the robustness properties of the Wald type test statistic. The robustness of the tests is investigated theoretically through the influence function analysis as well as suitable practical examples. It is theoretically established that the level as well as the power of the Wald-type tests are stable against contamination, while the classical Wald type test breaks down in this scenario. Some classical examples are presented which numerically substantiate the theory developed. Finally a simulation study is included to provide further confirmation of the validity of the theoretical results established in the paper.
MSC: 62F35, 62F05
We consider the problem of robust inference under the generalized linear model (GLM) with stochastic covariates. We derive the properties of the minimum density power divergence estimator of the parameters in GLM with random design and use this estimator to propose robust Wald-type tests for testing any general composite null hypothesis about the GLM. The asymptotic and robustness properties of the proposed tests are also examined for the GLM with random design. Application of the proposed robust inference procedures to the popular Poisson regression model for analyzing count data is discussed in detail both theoretically and numerically through simulation studies and real data examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.