It is shown that the discrete Darboux system, descriptive of conjugate lattices in Euclidean spaces, admits constraints on the (adjoint) eigenfunctions which may be interpreted as discrete orthogonality conditions on the lattices. Thus, it turns out that the elementary quadrilaterals of orthogonal lattices are cyclic. Orthogonal lattices on lines, planes and spheres are discussed and the underlying integrable systems in one, two and three dimensions are derived explicitly. A discrete analogue of Bianchi's Ribaucour transformation is set down and particular orthogonal lattices are given. As a by-product, discrete Dini surfaces are obtained.