The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period ahead, 10-day-ahead and 20-day-ahead forecasting horizons relative to the short memory GARCH specification. Additionally, the results suggest that underestimation of the true VaR figure becomes less prevalent as the forecasting horizon increases. Furthermore, the GARCH model has a lower quadratic loss between actual returns and ES forecasts, for the majority of the indices considered for the 10-day and 20-day forecasting horizons. Therefore, a long memory volatility model compared to a short memory GARCH model does not appear to improve the VaR and ES forecasting accuracy, even for longer forecasting horizons. Finally, the rolling-sampled estimated FIGARCH parameters change less smoothly over time compared to the GARCH models. Hence, the parameters' time-variant characteristic cannot be entirely due to the news information arrival process of the market; a portion must be due to the FIGARCH modelling process itself.