Background
Indian rivers are a major source of livelihood as river water is used for drinking, agriculture, and religious purposes to a large population. In this study, we report comparative microbial structures and functional potential of four major rivers of India, namely Ganga, Narmada, Cauvery, and Gomti. Comparative microbiome study of these geographically distinct rivers was performed using the samples collected from the source to the downstream sites of each river. We employed metagenomic approach to comprehensively determine the taxonomic and functional potential of river microbiome.
Results
In this study, we report the pollution influences on microbial composition and functional potential of four distantly located rivers. Results revealed significant microbial diversity in contaminated locations as compared to the upstream samples. A total number of 37 bacterial phyla were detected out of which Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Verrucomicrobia were abundant. Microbial diversity in respect to anthropogenic activities revealed the prevalence of Acidobacteria, Actinobacteria, Verrucomicrobia, Firmicutes, and Nitrospirae phyla, whereas a decline in Proteobacteria and Bacteroides. Virulent and temperate bacteriophages were found high in Ganga when compared to others. Interestingly, the abundance of bacteriophage decreased with increasing pollution load in the river Ganga, unlike in other rivers. The carbon utilization studies indicated a correlation with functional genes occurred in metal contaminated sites. Ganga water has relatively higher trace elements at pristine-upstream than in the Narmada and Cauvery, indicating its origin from Himalayan rocky mountains and also both Ganga and Cauvery rivers found to harbour a large number of metal resistance genes.
Conclusion
Our findings indicate a correlation between pollution and the microbiome composition. The insights obtained suggest the role of high abundance of microbial communities with implications for human health and demonstrate the functional capabilities contributed by the microbial communities. Among the four rivers studied, the distinctiveness of Ganga in comparison to others, particularly upstream of Ganga revealed a highly dynamic microbial structure. Bhagirathi and Alaknanda confluence to form Ganga, the microbiome revealed that Alaknanda has the foremost contribution to Ganga with respect to microbial community, bacteriophages, and the type of trace elements and heavy metals detected.