We
explore the process of base-flipping for four central bases,
adenine, guanine, cytosine, and thymine, in a deoxyribonucleic acid
(DNA) duplex using the energy landscape perspective. NMR imino-proton
exchange and fluorescence correlation spectroscopy studies have been
used in previous experiments to obtain lifetimes for bases in paired
and extrahelical states. However, the difference of almost 4 orders
of magnitude in the base-flipping rates obtained by the two methods
implies that they are exploring different pathways and possibly different
open states. Our results support the previous suggestion that minor
groove opening may be favored by distortions in the DNA backbone and
reveal links between sequence effects and the direction of opening,
i.e., whether the base flips toward the major or the minor groove
side. In particular, base flipping along the minor groove pathway
was found to align toward the 5′ side of the backbone. We find
that bases align toward the 3′ side of the backbone when flipping
along the major groove pathway. However, in some cases for cytosine
and thymine, the base flipping along the major groove pathway also
aligns toward the 5′ side. The sequence effect may be caused
by the polar interactions between the flipping-base and its neighboring
bases on either of the strands. For guanine flipping toward the minor
groove side, we find that the equilibrium constant for opening is
large compared to flipping via the major groove. We find that the
estimated rates of base opening, and hence the lifetimes of the closed
state, obtained for thymine flipping through small and large angles
along the major groove differ by 6 orders of magnitude, whereas for
thymine flipping through small angles along the minor groove and large
angles along the major groove, the rates differ by 3 orders of magnitude.