Tularemia is a febrile disease caused by the highly contagious bacterium Francisella tularensis. We undertook an analysis of the transcriptional response in peripheral blood during the course of ulceroglandular tularemia by use of Affymetrix microarrays comprising 14 500 genes. Samples were obtained from seven individuals at five occasions during 2 weeks after the first hospital visit and convalescent samples 3 months later. In total, 265 genes were differentially expressed, 95 of which at more than one time point. The differential expression was verified with real-time quantitative polymerase chain reaction for 36 genes (R 2 ¼ 0.590). The most prominent changes were noted in samples drawn on days 2-3 and a considerable proportion of the upregulated genes appeared to represent an interferon-g-induced response and also a proapoptotic response. Genes involved in the generation of innate and acquired immune responses were found to be downregulated, presumably a pathogen-induced event. A logistic regression analysis revealed that seven genes were good predictors of the early phase of tularemia. This is the first description of the transcriptional host response to ulceroglandular tularemia and the study has identified gene subsets relevant to the pathogenesis of the disease and subsets that may serve as early diagnostic biomarkers.