SummaryThe plasminogen activator, surface protease Pla, of the plague bacterium Yersinia pestis is an important virulence factor that enables the spread of Y. pestis from subcutaneous sites into circulation. Pla-expressing Y. pestis and recombinant Escherichia coli formed active plasmin in the presence of the major human plasmin inhibitor, a 2 -antiplasmin, and the bacteria were found to inactivate a 2 -antiplasmin. In contrast, only poor plasminogen activation and no cleavage of a 2 -antiplasmin was observed with recombinant bacteria expressing the homologous gene ompT from E. coli. A b-barrel topology model for Pla and OmpT predicted 10 transmembrane b-strands and five surface-exposed loops L1±L5. Hybrid Pla± OmpT proteins were created by substituting each of the loops between Pla and OmpT. Analysis of the hybrid molecules suggested a critical role of L3 and L4 in the substrate specificity of Pla towards plasminogen and a 2 -antiplasmin. Substitution analysis at 25 surface-located residues showed the importance of the conserved residues H101, H208, D84, D86, D206 and S99 for the proteolytic activity of Pla-expressing recombinant E. coli. The mature a-Pla of 292 amino acids was processed into b-Pla by an autoprocessing cleavage at residue K262, and residues important for the self-recognition of Pla were identified. Prevention of autoprocessing of Pla, however, had no detectable effect on plasminogen activation or cleavage of a 2 -antiplasmin. Cleavage of a 2 -antiplasmin and plasminogen activation were influenced by residue R211 in L4 as well as by unidentified residues in L3. OmpT, which is not associated with invasive bacterial disease, was converted into a Pla-like protease by deleting residues D214 and P215, by substituting residue K217 for R217 in L4 of OmpT and also by substituting the entire L3 with that from Pla. This simple modification of the surface loops and the substrate specificity of OmpT exemplifies the evolution of a housekeeping protein into a virulence factor by subtle mutations at critical protein regions. We propose that inactivation of a 2 -antiplasmin by Pla of Y. pestis promotes uncontrolled proteolysis and contributes to the invasive character of plague.
Pathogenic bacteria frequently express surface proteins with affinity for components of the mammalian extracellular matrix, i.e. collagens, laminin, fibronectin or proteoglycans. This review summarizes our current knowledge on the mechanisms of bacterial adherence to extracellular matrices and on the biological significance of these interactions. The best-characterized bacterial proteins active in these interactions are the mycobacterial fibronectin-binding proteins, the fibronectin- and the collagen-binding proteins of staphylococci and streptococci, specific enterobacterial fimbrial types, as well as the polymeric surface proteins YadA of yersinias and the A-protein of Aeromonas. Some of these bacterial proteins are highly specific for an extracellular matrix protein, some are multifunctional and express binding activities towards a number of target proteins. The interactions can be based on a protein-protein or on a protein-carbohydrate interaction, or on a bridging mechanism mediated by a bivalent soluble target protein. Many of the interactions have also been demonstrated on tissue sections or in vivo, and adherence to the extracellular matrix has been shown to promote bacterial colonization of damaged tissues.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.
The YadA surface protein of enteropathogenic Yersinia species contains two highly hydrophobic regions: one close to the amino terminal, and the other at the carboxy-terminal end of the YadA polypeptide. To study the role of these hydrophobic regions, we constructed 66 bp deletion mutants of the yadA genes of Yersinia enterocolitica serotype O:3 strain 6471/76 (YeO3) and of O:8 strain 8081 (YeO8). The mutant proteins, YadAYeO3-delta 83-104 and YadAYeO8-delta 8O-101, lacked 22 amino acids from the amino-terminal hydrophobic region, formed fibrillae and were expressed on the cell surface. Bacteria expressing the mutated protein lost their auto-agglutination potential as well as their collagen-binding property. Binding to fibronectin and laminin was affected differently in the YeO3 and the YeO8 constructs. The deletion did not influence YadA-mediated complement inhibition. Loss of the collagen-binding property was associated with loss of virulence in mice. We also constructed a number of YadAYeO3 deletion mutants lacking the hydrophobic carboxy-terminal end of the protein. Deletions ranging from 19 to 79 amino acids from the carboxy terminus affected polymerization of the YadA subunits, and also resulted in the loss of the YadA expression on the cell surface. This suggests that the carboxy terminus of YadA is involved in transport of the protein to the bacterial outer surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.