Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs) and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT)-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001) and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin) on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli). The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA) were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L). When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus strain synergistically affected by DP7–AZT showed no noteworthy morphological changes, suggesting that a molecular-level mechanism plays an important role in the synergistic action of DP7–AZT. AMP DP7 plus the antibiotic AZT or VAN is more effective, especially against highly antibiotic-resistant strains.