Agricultural microbiomes are major reservoirs of antibiotic resistance genes (ARGs), posing continuous risks to human health. To understand the role of bacteriophages as vehicles for the horizontal transfer of ARGs in the agricultural microbiome, we investigated the diversity of bacterial and viral microbiota from fecal and environmental samples on an organic farm. The profiles of the microbiome indicated the highest abundance of Bacteroidetes, Firmicutes, and Proteobacteria phyla in animal feces, with varying Actinobacteria and Spirochaetes abundance across farm animals. The most predominant composition in environmental samples was the phylum Proteobacteria. Compared to the microbiome profiles, the trends in virome indicated much broader diversity with more specific signatures between the fecal and environmental samples. Overall, viruses belonging to the order Caudovirales were the most prevalent across the agricultural samples. Additionally, the similarities within and between fecal and environmental components of the agricultural environment based on ARG-associated bacteria alone were much lower than those of total microbiome composition. However, there were significant similarities in the profiles of ARG-associated viruses across the fecal and environmental components. Moreover, the predictive models of phage-bacterial interactions on bipartite ARG transfer networks indicated that phages belonging to the order Caudovirales, particularly in the Siphoviridae family, contained diverse ARG types in different samples. Their interaction with various bacterial hosts further implied the important role of bacteriophages in ARG transmission across bacterial populations. Our findings provided a novel insight into the potential mechanisms of phage-mediated ARG transmission and their correlation with resistome evolution in natural agricultural environments.
IMPORTANCE
Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.