We study the effects of piece selection principles on cardinal arithmetic (Shelah style). As an application, we discuss questions of Abe and Usuba. In particular, we show that if λ≥2κ$\lambda \ge 2^\kappa$, then (a) Iκ,λ$I_{\kappa , \lambda }$ is not (λ, 2)‐distributive, and (b) Iκ,λ+→false(Iκ,λ+false)ω2$I_{\kappa , \lambda }^+ \rightarrow (I_{\kappa , \lambda }^+)^2_\omega$ does not hold.