Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract:We study a class of arrangements of lines with multiplicities on the plane which admit the Chalykh-Veselov Baker-Akhiezer function. These arrangements are obtained by adding multiplicity one lines in an invariant way to any dihedral arrangement with invariant multiplicities. We describe all the Baker-Akhiezer arrangements when at most one line has multiplicity higher than 1. We study associated algebras of quasiinvariants which are isomorphic to the commutative algebras of quantum integrals for the generalized Calogero-Moser operators. We compute the Hilbert series of these algebras and we conclude that the algebras are Gorenstein. We also show that there are no other arrangements with Gorenstein algebras of quasi-invariants when at most one line has multiplicity bigger than 1.
Lassalle and Nekrasov discovered in the 1990s a surprising correspondence between the rational Calogero–Moser system with a harmonic term and its trigonometric version. We present a conceptual explanation of this correspondence using the rational Cherednik algebra and establish its quasi-invariant extension. More specifically, we consider configurations $${\mathcal {A}}$$ A of real hyperplanes with multiplicities admitting the rational Baker–Akhiezer function and use this to introduce a new class of non-symmetric polynomials, which we call $${\mathcal {A}}$$ A -Hermite polynomials. These polynomials form a linear basis in the space of $${\mathcal {A}}$$ A -quasi-invariants, which is an eigenbasis for the corresponding generalised rational Calogero–Moser operator with harmonic term. In the case of the Coxeter configuration of type $$A_N$$ A N this leads to a quasi-invariant version of the Lassalle–Nekrasov correspondence and its higher order analogues.
In this paper, we study properties of the algebras of planar quasi-invariants. These algebras are Cohen-Macaulay and Gorenstein in codimension one. Using the technique of matrix problems, we classify all Cohen-Macaulay modules of rank one over them and determine their Picard groups. In terms of this classification, we describe the spectral modules of the planar rational Calogero-Moser systems. Finally, we elaborate the theory of the algebraic inverse scattering method, providing explicit computations of some 'isospectral deformations' of the planar rational Calogero-Moser system in the case of the split rational potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.