Abstract-Existing research efforts into tennis visualization have primarily focused on using ball and player tracking data to enhance professional tennis broadcasts and to aid coaches in helping their students. Gathering and analyzing this data typically requires the use of an array of synchronized cameras, which are expensive for non-professional tennis matches. In this paper, we propose TenniVis, a novel tennis match visualization system that relies entirely on data that can be easily collected, such as score, point outcomes, point lengths, service information, and match videos that can be captured by one consumer-level camera. It provides two new visualizations to allow tennis coaches and players to quickly gain insights into match performance. It also provides rich interactions to support ad hoc hypothesis development and testing. We first demonstrate the usefulness of the system by analyzing the 2007 Australian Open men's singles final. We then validate its usability by two pilot user studies where two college tennis coaches analyzed the matches of their own players. The results indicate that useful insights can quickly be discovered and ad hoc hypotheses based on these insights can conveniently be tested through linked match videos.