This study investigates the effects of filler loading on the properties of rattan powder-filled polypropylene composites. The composites were prepared by incorporating rattan powder of average size 180 µm into polypropylene matrix using a Polydrive Thermo Haake internal mixer. Filler loadings of the rattan powders ranged between 0 and 40 parts per hundred parts of resin (phr). Mechanical, morphological, and thermal properties were studied. The tensile strength, elongation at tensile failure, and impact strength decreased, while stabilization torque, thermal stability, and water absorption increased with increasing filler loading. Tensile modulus increased with addition of rattan powder and eventually decreased at 40 phr filler loading due to the weakening adhesion between the filler and the matrix. The morphological studies of fractured surfaces using SEM confirmed the deterioration in tensile properties.