Overall water splitting (OWS) using semiconductor photocatalysts is a promising method for solar fuel production. Achieving a high quantum efficiency is one of the most important prerequisites for photocatalysts to realize high solar‐to‐fuel efficiency. In a recent study (Nature, 2020, 58, 411‐414), a quantum efficiency of almost 100% has been achieved in an aluminum‐doped strontium titanate (SrTiO3:Al) photocatalyst. Herein, using the SrTiO3:Al as a model photocatalyst, we reveal the criteria for efficient photocatalytic water splitting by investigating the carrier dynamics through a comprehensive photoluminescence study. It is found that the Al doping suppresses the generation of Ti3+ recombination centers in SrTiO3, the surface band bending facilitates charge separation, and the in‐situ photo‐deposited Rh/Cr2O3 and CoOOH co‐catalysts render efficient charge extraction. By suppressing photocarrier recombination and establishing a facile charge separation and extraction mechanism, high quantum efficiency can be achieved even on photocatalysts with a very short (sub‐ns) intrinsic photocarrier lifetime, challenging the belief that a long carrier lifetime is a fundamental requirement. Our findings could provide guidance on the design of OWS photocatalysts toward more efficient solar‐to‐fuel conversion.