Electrohydrodynamic (EHD) inkjet printing is an efficient technique for printing multiple sensors in a multifaceted area. It can be applied to various fields according to the shape of the printing result and the algorithm employed. In this study, temperature sensors capable of detecting heat sources were fabricated. Inks suitable for EHD inkjet printing were produced, and optimal parameters for printing were determined. Printing was performed using the corresponding parameters, and various printing results were obtained. Furthermore, an experiment was conducted to confirm the temperature measurement characteristics of the results and the tolerance of the sensor. Grid-type sensors were fabricated based on the results, and the sensor characteristics were confirmed in an orthogonal form. Heat was applied to arbitrary positions. Resistance to changes due to heat was measured, and the location at which the heat was generated was detected by varying the change in resistance. Through this study, efficient heat control can be achieved, as the location of the heat source can be identified quickly.