Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Axillary meristem growth and development help define plant architecture in barley (Hordeum vulgare L). Plants carrying the recessive uniculm2 (cul2) mutation initiate vegetative axillary meristem development but fail to develop tillers. In addition, inflorescence axillary meristems develop into spikelets, but the spikelets at the distal end of the inflorescence have an altered phyllotaxy and are sometimes absent. Double mutant combinations of cul2 and nine other recessive mutations that exhibit low to high tiller number phenotypes resulted in a uniculm vegetative phenotype. One exception was the occasional multiple shoots produced in combination with granum-a; a high tillering mutant that occasionally produces two shoot apical meristems. These results show that the CUL2 gene product plays a role in the development of axillary meristems into tillers but does not regulate the development of vegetative apical meristems. Moreover, novel double-mutant inflorescence phenotypes were observed with cul2 in combination with the other mutants. These data show that the wild-type CUL2 gene product is involved in controlling proper inflorescence development and that it functions in combination with some of the other genes that affect branching. Our genetic analysis indicates that there are genetically separate but not distinct regulatory controls on vegetative and inflorescence axillary development. Finally, to facilitate future positionally cloning of cul2, we positioned cul2 on chromosome 6(6H) of the barley RFLP map.
Axillary meristem growth and development help define plant architecture in barley (Hordeum vulgare L). Plants carrying the recessive uniculm2 (cul2) mutation initiate vegetative axillary meristem development but fail to develop tillers. In addition, inflorescence axillary meristems develop into spikelets, but the spikelets at the distal end of the inflorescence have an altered phyllotaxy and are sometimes absent. Double mutant combinations of cul2 and nine other recessive mutations that exhibit low to high tiller number phenotypes resulted in a uniculm vegetative phenotype. One exception was the occasional multiple shoots produced in combination with granum-a; a high tillering mutant that occasionally produces two shoot apical meristems. These results show that the CUL2 gene product plays a role in the development of axillary meristems into tillers but does not regulate the development of vegetative apical meristems. Moreover, novel double-mutant inflorescence phenotypes were observed with cul2 in combination with the other mutants. These data show that the wild-type CUL2 gene product is involved in controlling proper inflorescence development and that it functions in combination with some of the other genes that affect branching. Our genetic analysis indicates that there are genetically separate but not distinct regulatory controls on vegetative and inflorescence axillary development. Finally, to facilitate future positionally cloning of cul2, we positioned cul2 on chromosome 6(6H) of the barley RFLP map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.