Cognitive decline in Parkinson’s disease (PD) is a critical premotor sign that may occur in approximately 40% of PD patients up to 10 years prior to clinical recognition and diagnosis. Delineating the mechanisms and specific behavioral signs of cognitive decline associated with PD prior to motor impairment is a critical unmet need. Rodent PD models that have an impairment in a cognitive phenotype for a time period sufficiently long enough prior to motor decline can be useful to establish viable candidate mechanisms. Arguably, the methods used to evaluate cognitive decline in rodent models should emulate methods used in the assessment of humans to optimize translation. Premotor cognitive decline in human PD can potentially be examined in the genetically altered PINK1−/− rat model, which exhibits a protracted onset of motor decline in most studies. To increase translation to cognitive assessment in human PD, we used a modified non-water multiple T-maze, which assesses attention, cognitive flexibility, and working memory similarly to the Trail Making Test (TMT) in humans. Similar to the deficiencies revealed in TMT test outcomes in human PD, 4-month-old PINK1−/− rats made more errors and took longer to complete the maze, despite a hyperkinetic phenotype, compared to wild-type rats. Thus, we have identified a potential methodological tool with cross-species translation to evaluate executive functioning in an established PD rat model.