Schemas modulate memory performance for schema-congruent and -incongruent information. However, it is typically assumed they do not influence behaviour for information irrelevant to themselves. We assessed memory and generalisation behaviour for information related to an underlying pattern, where a schema could be extracted (schema-relevant), and information that was unrelated and therefore irrelevant to the extracted schema (schema-irrelevant). Using precision measures of long-term memory, where participants learnt associations between words and locations around a circle, we assessed memory and generalisation for schema-relevant and -irrelevant information. Words belonged to two semantic categories: human-made and natural. For one category, word-locations were clustered around one point on the circle (clustered condition), while the other category had word-locations randomly distributed (non-clustered condition). The presence of an underlying pattern in the clustered condition allows for the extraction of a schema that can support both memory and generalisation. At test, participants were presented with old (memory) and new (generalisation) words, requiring them to identify a remembered location or make a best guess. The presence of the clustered pattern modulated memory and generalisation. In the clustered condition, participants placed old and new words in locations consistent with the underlying pattern. In contrast, for the non-clustered condition, participants were less likely to place old and new non-clustered words in locations consistent with the clustered condition. We therefore provide evidence that the presence of schematic information modulates memory and generalisation for schema-relevant and -irrelevant information. Our results highlight the need to carefully construct appropriate schema-irrelevant control conditions such that behaviour in these conditions is not modulated by the presence of a schema. Theoretically, models of schema processing need to account for how the presence of schematic information can have consequences for information that is technically irrelevant to itself.