Humans often make decisions based on uncertain sensory information. Signal detection theory (SDT) describes detection and discrimination decisions as a comparison of stimulus “strength” to a fixed decision criterion. However, recent research suggests that current responses depend on the recent history of stimuli and previous responses, suggesting that the decision criterion is updated trial-by-trial. The mechanisms underpinning criterion setting remain unknown. Here, we examine how observers learn to set a decision criterion in an orientation-discrimination task under both static and dynamic conditions. To investigate mechanisms underlying trial-by-trial criterion placement, we introduce a novel task in which participants explicitly set the criterion, and compare it to a more traditional discrimination task, allowing us to model this explicit indication of criterion dynamics. In each task, stimuli were ellipses with principal orientations drawn from two categories: Gaussian distributions with different means and equal variance. In the covert-criterion task, observers categorized a displayed ellipse. In the overt-criterion task, observers adjusted the orientation of a line that served as the discrimination criterion for a subsequently presented ellipse. We compared performance to the ideal Bayesian learner and several suboptimal models that varied in both computational and memory demands. Under static and dynamic conditions, we found that, in both tasks, observers used suboptimal learning rules. In most conditions, a model in which the recent history of past samples determines a belief about category means fit the data best for most observers and on average. Our results reveal dynamic adjustment of discrimination criterion, even after prolonged training, and indicate how decision criteria are updated over time.
Optimal sensory decision-making requires the combination of uncertain sensory signals with prior expectations. The effect of prior probability is often described as a shift in the decision criterion. Can observers track sudden changes in probability? To answer this question, we used a change-point detection paradigm that is frequently used to examine behavior in changing environments. In a pair of orientation-categorization tasks, we investigated the effects of changing probabilities on decision-making. In both tasks, category probability was updated using a sample-and-hold procedure. We developed an ideal Bayesian change-point detection model in which the observer marginalizes over both the current run length (i.e., time since last change) and the current category probability. We compared this model to various alternative models that correspond to different strategies -from approximately Bayesian to simple heuristics -that the observers may have adopted to update their beliefs about probabilities. We find that probability is estimated following an exponential averaging model with a bias towards equal priors, consistent with a conservative bias. The mechanism underlying change of decision criterion is a combination of on-line estimation of prior probability and a stable, long-term equal-probability prior, thus operating at two very different timescales. Author summaryWe demonstrate how people learn and adapt to changes to the probability of occurrence of one of two categories on decision-making under uncertainty. The study combined psychophysical behavioral tasks with computational modeling. We used two behavioral tasks: a typical forced-choice categorization task as well as one in which the observer specified the decision criterion to use on each trial before the stimulus was displayed. We formulated an ideal Bayesian change-point detection model and compared it to several alternative models. We found that the data are best fit by a model that estimates category probability based on recently observed exemplars with a bias towards equal probability. Our results suggest that the brain takes multiple relevant time scales into account when setting category expectations. Introduction 1 Sensory decision-making involves making decisions under uncertainty. Furthermore, 2 optimal sensory decision-making requires the combination of uncertain sensory signals 3 PLOS 1/24 with prior expectations. Perceptual models of decision-making often incorporate prior 4 expectations to describe human behavior. In Bayesian models, priors are combined 5 with likelihoods to compute a posterior [1]. In signal detection theory, the effect of 6 unequal probabilities (signal present vs. absent) is a shift of the decision criterion [2]. 7 The effects of prior probability on the decision criterion have been observed in 8 detection [2-4], line tilt [5], numerosity estimation [6, 7], recognition memory [8], and 9 perceptual categorization [9] tasks, among others. These studies generally use explicit 10 priors, assume a fixed effect, and treat lear...
Optimal sensory decision-making requires the combination of uncertain sensory signals with prior expectations. The effect of prior probability is often described as a shift in the decision criterion. Can observers track sudden changes in probability? To answer this question, we used a change-point detection paradigm that is frequently used to examine behavior in changing environments. In a pair of orientation-categorization tasks, we investigated the effects of changing probabilities on decision-making. In both tasks, category probability was updated using a sample-and-hold procedure: probability was held constant for a period of time before jumping to another probability state that was randomly selected from a predetermined set of probability states. We developed an ideal Bayesian change-point detection model in which the observer marginalizes over both the current run length (i.e., time since last change) and the current category probability. We compared this model to various alternative models that correspond to different strategies—from approximately Bayesian to simple heuristics—that the observers may have adopted to update their beliefs about probabilities. While a number of models provided decent fits to the data, model comparison favored a model in which probability is estimated following an exponential averaging model with a bias towards equal priors, consistent with a conservative bias, and a flexible variant of the Bayesian change-point detection model with incorrect beliefs. We interpret the former as a simpler, more biologically plausible explanation suggesting that the mechanism underlying change of decision criterion is a combination of on-line estimation of prior probability and a stable, long-term equal-probability prior, thus operating at two very different timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.