Social online learning environments provide new recommendation opportunities to meet users' needs. However, current educational recommender systems do not usually take advantage of these opportunities. To progress on this issue, we have proposed a knowledge engineering approach based on human–computer interaction (i.e. user‐centred design as defined by the standard ISO 9241‐210:2010) and artificial intelligence techniques (i.e. data mining) that involve educators in the process of eliciting educational oriented recommendations. To date, this approach differs from most recommenders in education in focusing on identifying relevant actions to be recommended on e‐learning services from a user‐centric perspective, thus widening the range of recommendation types. This approach has been used to identify 32 recommendations that consider several types of actions, which focus on promoting active participation of learners and on strengthening the sharing of experiences among peers through the usage of the social services provided by the learning environment. The paper describes where data mining techniques have been applied to complement the user‐centred design methods to produce social oriented recommendations in online learning environments.