2018
DOI: 10.21609/jiki.v11i2.536
|View full text |Cite
|
Sign up to set email alerts
|

Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification

Abstract: Bidikmisi scholarship grantees are determined based on criteria related to the socioeconomic conditions of the parent of the scholarship grantee. Decision process of Bidikmisi acceptance is not easy to do, since there are sufficient data of prospective applicants and variables of varied criteria. Based on these problems, a new approach is proposed to determine Bidikmisi grantees by using the Bayesian Bernoulli mixture regression model. The modeling procedure is performed by compiling the accepted and unaccepte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 13 publications
0
4
0
2
Order By: Relevance
“…The k-prototypes algorithm is one of the clustering methods based on partitioning (Pham et al, 2011) (Iriawan et al, 2018). This algorithm is the result of the development of the k-means algorithm (Mau and Huynh, 2021) (Ahmad and Dey, 2011) to handle clustering on data with mixed numeric and categorical type attributes (Dinh et al, 2021).…”
Section: Methodsmentioning
confidence: 99%
“…The k-prototypes algorithm is one of the clustering methods based on partitioning (Pham et al, 2011) (Iriawan et al, 2018). This algorithm is the result of the development of the k-means algorithm (Mau and Huynh, 2021) (Ahmad and Dey, 2011) to handle clustering on data with mixed numeric and categorical type attributes (Dinh et al, 2021).…”
Section: Methodsmentioning
confidence: 99%
“…Proses randomisasi mempunyai distribusi yang berasal dari berbagai variabel data yang dikelompokkan berdasarkan data histori [16], Metode Monte Carlo menggunakan generate probabilitas distribusi bilangan acak yang diolah, kemudian divalidasi dengan data fakta untuk memastikan kondisi simulasi relatif sama kondisi sebenarnya [17]. Monte Carlo merupakan salah satu metode numerik yang dideskripsikan sebagai metode simulasi statis [18] yang dapat diintegrasikan secara numerik oleh prosedur simulasi [19]. Proses probabilitas yang digunakan dalam simulasi Monte Carlo adalah proses distribusi probabilitas kumulatif, yaitu menjumlahkan distribusi probabilitas yang ditambahkan pada probabilitas kumulatif sebelumnya, kecuali untuk nilai distribusi probabilitas untuk kelas pertama, nilai untuk distribusi probabilitas komulatif untuk kelas pertama merupakan nilai dari probabilitas kelas itu sendiri [20].…”
Section: Pendahuluanunclassified
“…So to achieve this, each weight its individual update value ∆ ij . This adaptive update value evolves during the learning process based on its local sight on the error function E as follows [5]:…”
Section: Resilient Backpropagation Neural Network (Resilient Bpnn)mentioning
confidence: 99%
“…Teshnizi and Ayatollahi [4], examined by comparing logistic regression with Naural Network to predict student academic failure by yielding each classification 77.5% for result of classification logistic regression method and 84.3% for classification of Neural Network method. The resulting Neural Network method is better than the logistic regression method [4], using the Bayesian Bernoulli mixture regression model for Bidikmisi scholarship classification [5], andanother method that uses a binary logistic regression method [6].…”
Section: Introductionmentioning
confidence: 99%