Bidikmisi scholarship grantees are determined based on criteria related to the socioeconomic conditions of the parent of the scholarship grantee. Decision process of Bidikmisi acceptance is not easy to do, since there are sufficient data of prospective applicants and variables of varied criteria. Based on these problems, a new approach is proposed to determine Bidikmisi grantees by using the Bayesian Bernoulli mixture regression model. The modeling procedure is performed by compiling the accepted and unaccepted cluster of applicants which are AbstrakPenerima beasiswa Bidikmisi ditentukan berdasarkan kriteria yang berkaitan dengan kondisi sosial ekonomi dari orang tua atau wali dari penerima beasiswa. Proses penentuan penerimaan tidak mudah dilakukan mengingat terdapat data calon pendaftar yang cukup besar dan variabel kriteria yang bervariasi. Berdasarkan permasalahan tersebut, diusulkan pendekatan baru untuk penentuan penerima Bidikmisi dengan menggunakan model regresi mixture Bernouuli Bayesian. Prosedur pemodelan dilakukan dengan menyusun klaster pendaftar yang diterima dan tidak diterima yang selanjutnya dilakukan estimasi model untuk setiap klaster melalui model mixture regresi Bernoulli. Proses estimasi parameter model dilakukan dengan menyusun suatu algoritma dengan berdasarkan metode Bayesian Markov Chain Monte Carlo (MCMC). Ketepatan proses klasifikasi melalui model regresi mixture Bernoulli Bayesian diukur dengan menentukan prosentase klasifikasi penerimaan dari model yang dibandingkan dengan prosentase klasifikasi penerimaan dari model regresi dummy dan model regresi polytomous. Hasil perbandingan menunjukkan bahwa pendekatan model regresi nixture Bernoulli Bayesian memberikan prosentase ketepatan klasifikasi penerimaan lebih tinggi dibanding model regresi dummy dan model regresi polytomous.Kata Kunci: Model mixture regresi Bernoulli, Bayesian MCMC, Gibbs Sampling, Bidikmisi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.