2023
DOI: 10.21203/rs.3.rs-2902623/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bayesian Discrete Lognormal Regression Model for Genomic Prediction

Abstract: Genomic selection is a powerful tool in modern breeding programs that uses genomic information to predict the performance of individuals and select those with desirable traits. It has revolutionized animal and plant breeding, as it allows breeders to identify the best candidates without labor-intensive and time-consuming phenotypic evaluations. While several statistical models have been developed, most of them have been for quantitative continuous traits and only a few for count responses. In this paper, we pr… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?