Nuestro objetivo fue estudiar las actitudes de la población urbana mexicana con respecto al etiquetado de los productos transgénicos mediante el análisis transversal de una muestra probabilística de 14 mil 720 personas entre 18 y 65 años de edad. Sus actitudes hacia el etiquetado de productos (GM) fueron estudiadas y analizadas con un instrumento de 4 ítems binarios. Entre los resultados se encontró que 63.25 % de la muestra tiene el hábito de leer las etiquetas de los productos que consume; 93.69 % consideró que la publicidad debe informar al consumidor final sobre el contenido; 93.59 % sugirió que los alimentos GM deben mostrar la información en la etiqueta y 93.23 % consideró que el gobierno mexicano debe legislar para regular el etiquetado de los productos. En conclusión, más de la mitad de los encuestados leyó la información que viene en las etiquetas de los productos que consume. Además, estuvo de acuerdo en que los productos elaborados con plantas y animales genéticamente modificados muestren en su etiquetado la información correspondiente para que el ciudadano pueda elegir si los consume o no.
Teléfono celular 3121141265 ResumenActualmente existe un gran debate sobre la producción y el consumo de los organismos genéticamente modificados (OGMs) en México, ya sea para su uso alimenticio, en la agricultura o en aplicaciones médicas. Por ello se requiere obtener información sobre su viabilidad en el mercado. Por lo anterior, el objetivo del presente estudio fue medir las percepciones y actitudes de los consumidores sobre la producción y consumo de OGMs, en el estado de Colima, México, en 2015. Como materiales y métodos para obtener la información se estructuró un cuestionario con 60 preguntas que englobaron 11 factores latentes con un enfoque cuantitativo. El cuestionario se aplicó a 1 000 personas de la zona urbana del estado de Colima, México. Los resultados revelaron similitudes y diferencias importantes respecto a estudios realizados en otros países, mostrando, principalmente, que los encuestados no poseen la suficiente información sobre los OGMs, tienen desconfianza alta hacia los mismos y no perciben su valor social ni efectos positivos en la salud más allá de incrementar la productividad agrícola. Se concluyó que es necesario generar y proporcionar información científicamente correcta sobre los OGMs a los mexicanos para que estén mejor informados y puedan dar una opinión crítica sobre su consumo.Palabras clave: organismos genéticamente modificados, percepciones y actitudes del consumidor, Colima. Vol. 6, Núm. 12Julio -Diciembre 2017 DOI: 10.23913/ricea.v6i12.104 AbstractNowdays, there is a great debate on the production and consumption of genetically modified organisms (GMOs) in Mexico. Whether as food for human consumption or for medical applications, for this reason it is required information about its viability in the marketplace.Therefore, the objective of this study was to measure the perceptions and attitudes about the production and consumption of consumers towards GMOs in the state of Colima, Mexico at 2015. As materials and methods to obtain information a questionnaire with 60 questions that encompassed in 11 latent factors was structured. The questionnaire was applied to 1 000 people of the urban localities of Colima, México. The results revealed important similarities and differences with studies in other countries, showing mainly that respondents did not have sufficient information on GMOs, have a high distrust toward GMOs, and not perceive their social value and positive health effects beyond increasing agricultural productivity. We conclude that it is necessary to generate and provide scientifically accurate information on GMOs to the people, so they are better informed and can give a critical opinion on the use of GMOs.Keywords: genetically modified organisms, consumer perceptions and attitudes, Colima. ResumoAtualmente, há um grande debate sobre a produção e consumo de organismos geneticamente modificados (OGM) no México, seja para uso alimentar, agricultura ou aplicações médicas. Materiales y métodos ParticipantesCon la finalidad de lograr los resultados planteados, el objetivo de...
IntroductionGenomic selection (GS) has gained global importance due to its potential to accelerate genetic progress and improve the efficiency of breeding programs.Objectives of the researchIn this research we proposed a method to improve the prediction accuracy of tested lines in new (untested) environments.Method-1The new method trained the model with a modified response variable (a difference of response variables) that decreases the lack of a non-stationary distribution between the training and testing and improved the prediction accuracy.Comparing new and conventional methodWe compared the prediction accuracy of the conventional genomic best linear unbiased prediction (GBLUP) model (M1) including (or not) genotype × environment interaction (GE) (M1_GE; M1_NO_GE) versus the proposed method (M2) on several data sets.Results and discussionThe gain in prediction accuracy of M2, versus M1_GE, M1_NO_GE in terms of Pearson´s correlation was of at least 4.3%, while in terms of percentage of top-yielding lines captured when was selected the 10% (Best10) and 20% (Best20) of lines was at least of 19.5%, while in terms of Normalized Root Mean Squared Error (NRMSE) was of at least of 42.29%.
Genomic selection is a powerful tool in modern breeding programs that uses genomic information to predict the performance of individuals and select those with desirable traits. It has revolutionized animal and plant breeding, as it allows breeders to identify the best candidates without labor-intensive and time-consuming phenotypic evaluations. While several statistical models have been developed, most of them have been for quantitative continuous traits and only a few for count responses. In this paper, we propose a discrete lognormal regression model in the Bayesian context, developed using the inference by Gibbs sampler to explore the corresponding posterior distribution and make the predictions. A data set of resistance disease is used in the wheat crop and is then evaluated against the traditional Gaussian model and a lognormal model over the located response. The results indicate the proposed model is a competitive and natural model for predicting count genomic traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.