Transmission line outage rates are fundamental to power system reliability analysis. Line outages are infrequent, occurring only about once a year, so outage data are limited. We propose a Bayesian hierarchical model that leverages line dependencies to better estimate outage rates of individual transmission lines from limited outage data. The Bayesian estimates have a lower standard deviation than estimating the outage rates simply by dividing the number of outages by the number of years of data, especially when the number of outages is small. The Bayesian model produces more accurate individual line outage rates, as well as estimates of the uncertainty of these rates. Better estimates of line outage rates can improve system risk assessment, outage prediction, and maintenance scheduling.