Publisher's copyright statement: c 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. The capacity value of a generator is the contribution that a given generator makes to generation system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis are highlighted with a discussion of relevant issues also given.Index Terms--Wind power, capacity value, effective load carrying capability, power system operation and planning
Increasing connection of variable distributed generation, like wind power, to distribution networks requires new control strategies to provide greater flexibility and use of existing network assets. Active Network Management (ANM) will play a major role in this but there is a continuing need to demonstrate the benefit in facilitating connection of new generation without the need for traditional reinforcements. This paper proposes a multi-period AC Optimal Power Flow (OPF)based technique for evaluating the maximum capacity of new variable distributed generation able to be connected to a distribution network when ANM control strategies are in place. The ANM schemes embedded into the OPF include coordinated voltage control, adaptive power factor and energy curtailment. A generic UK medium voltage distribution network is analysed using coincident demand and wind availability data derived from hourly time-series. Results clearly show that very high penetration levels of new variable generation capacity can be achieved by considering ANM strategies compared to the widely used passive operation (i.e., 'fit and forget'). The effects on network losses are also discussed.
Cascading failure in electric power systems is a complicated problem for which a variety of models, software tools, and analytical tools have been proposed but are difficult to verify. Benchmarking and validation are necessary to understand how closely a particular modeling method corresponds to reality, what engineering conclusions may be drawn from a particular tool, and what improvements need to be made to the tool in order to reach valid conclusions. The community needs to develop the test cases tailored to cascading that are central to practical benchmarking and validation. In this paper, the IEEE PES working group on cascading failure reviews and synthesizes how benchmarking and validation can be done for cascading failure analysis, summarizes and reviews the cascading test cases that are available to the international community, and makes recommendations for improving the state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.