2011
DOI: 10.2139/ssrn.1960580
|View full text |Cite
|
Sign up to set email alerts
|

Bayesian Inference for the Mixed-Frequency VAR Model

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0

Year Published

2013
2013
2019
2019

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 48 publications
(39 reference statements)
0
5
0
Order By: Relevance
“…The four proxies are measured in high-resolution with fairly uniform depth sampling (2cm about every 5cm), but different proxies are not sampled at all possible locations. In order to compose an evenlyspaced data set that will be used to train discrete-time statistical models described below, the expected values in an evenly-spaced record are used to fill in the records using a Kalman filter (Little & Rubin, 1986;Viefers, 2011). The Kalman filter finds the expected value of the missing data given the observed value, and we find the maximum likelihood estimates of the model parameters by using the expectationmaximization algorithm.…”
Section: Missing Datamentioning
confidence: 99%
“…The four proxies are measured in high-resolution with fairly uniform depth sampling (2cm about every 5cm), but different proxies are not sampled at all possible locations. In order to compose an evenlyspaced data set that will be used to train discrete-time statistical models described below, the expected values in an evenly-spaced record are used to fill in the records using a Kalman filter (Little & Rubin, 1986;Viefers, 2011). The Kalman filter finds the expected value of the missing data given the observed value, and we find the maximum likelihood estimates of the model parameters by using the expectationmaximization algorithm.…”
Section: Missing Datamentioning
confidence: 99%
“…Another study by Viefers (2011) reconsiders the estimation of a MF-VAR as in Mariano and Murasawa (2010). First, the author makes use of the Bayesian MCMC algorithm to simulate and estimate the model, and second he extends the MF-VAR to allow for regime switching.…”
Section: Mixed-frequency Var Modelsmentioning
confidence: 99%
“…Statistical methods to deal with mixed-frequency data has attracted considerable attention over the last years. A branch of literature represented by Viefers (2011), Schorfheide et al (2014), Schorfheide and Song (2015), and Eraker et al (2015) draw the inference in a Bayesian fashion.…”
Section: Introductionmentioning
confidence: 99%