Bayesian uncertainty quantification of reservoir prediction is a significant area of ongoing research, with the major effort focussed on estimating the likelihood. However, the prior definition, which is equally as important in the Bayesian context and is related to the uncertainty in reservoir model description, has received less attention. This paper discusses methods for incorporating the prior definition into assisted history-matching workflows and demonstrates the impact of non-geologically plausible prior definitions on the posterior inference. This is the first of two papers to deal with the importance of an appropriate prior definition of the model parameter space, and it covers the key issue in updating the geological model-how to preserve geological realism in models that are produced by a geostatistical algorithm rather than manually by a geologist. To preserve realism, geologically consistent priors need to be included in the history-matching workflows, therefore the technical challenge lies in defining the space of all possibilities according to the current state of knowledge. This paper describes several workflows for Bayesian uncertainty quantification that build realistic prior descriptions of geological parameters for history matching using support vector regression and support vector classification. In the examples presented, it is used to build a prior description of channel dimensions, which is then used to history-match the parameters of both fluvial and deep-water reservoir geostatistical B Vasily Demyanov