“…A Bayesian approach based on the AL likelihood was formally discussed in Yu & Moyeed () for linear quantile regression. In recent years, the AL likelihood has been adopted for Bayesian quantile regression in different contexts and applications, for instance, quantile regression with random effects (Geraci & Bottai, ; Yuan & Yin, ; Geraci & Bottai, ; Yue & Rue, ; Luo et al , ; Wang, ), variable selection for quantile regression (Li et al , ; Alhamzawi et al , ; Alhamzawi & Yu, ; ), spatial quantile regression (Lum & Gelfand, ), quantile regression for count data with application to environmental epidemiology (Lee & Neocleous, ), non‐parametric and semiparametric quantile regression models (Chen & Yu, ; Thompson et al , ; Hu et al , ; Waldmann et al , ; Zhu et al , ; Hu et al , ), quantile regression with fixed censoring (Yu & Stander, ; Kozumi & Kobayashi, ; Kobayashi & Kozumi, ; Yue & Hong, ; Alhamazawi & Yu, ; Zhao & Lian, ), and binary quantile regression (Benoit & Poel, ; Benoit et al , ; Miguéis et al , ).…”